Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1332882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405400

RESUMO

Background: Previous studies showed that vagus nerve stimulation (VNS) can improve cognitive function in patients with epilepsy, but there is still great controversy about the effect of VNS on cognitive function in patients with epilepsy. Objective: To investigate the effect of VNS on the cognitive function of epilepsy patients. Methods: Clinical trials published in PubMed, The Cochrane Library, and Embase before September 20, 2022, were comprehensively searched. Primary outcomes were overall cognitive performance, executive function, attention, memory; Secondary outcomes were seizure frequency, mood, and quality of life (QOL). Random effects were used to calculate the pooled outcome. Results: Twenty clinical trials were included. There was no significant improvement in overall cognitive performance in patients with epilepsy after VNS treatment (SMD = 0.07; 95% CI: -0.12 to 0.26; I2 = 0.00%) compared to pre-treatment. Compared to pre-treatment, there was no significant difference in executive function (SMD = -0.50; 95% CI: -1.50 to 0.50; p = 0.32), attention (SMD = -0.17; 95% CI: -0.43 to 0.09; p = 0.21) and memory (SMD = 0.64; 95% CI: -0.11 to 1.39; p = 0.09), but there were significant differences in seizure frequency, mood, and quality of life in patients with epilepsy after VNS. Conclusion: This meta-analysis did not establish that VNS can significantly improve cognitive function in patients with epilepsy, but it shows that VNS can significantly improve the seizure frequency, mood and quality of life of patients with epilepsy. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42023384059.

2.
PPAR Res ; 2020: 6661642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414819

RESUMO

Inflammation caused by neuropathy contributes to the development of neuropathic pain (NP), but the exact mechanism still needs to be understood. Peroxisome proliferator-activated receptor α (PPARα), an important inflammation regulator, might participate in the inflammation in NP. To explore the role of PPARα in NP, the effects of PPARα agonist WY-14643 on chronic constriction injury (CCI) rats were evaluated. The results showed that WY-14643 stimulation could decrease inflammation and relieve neuropathic pain, which was relative with the activation of PPARα. In addition, we also found that the SIRT1/NF-κB pathway was involved in the WY-14643-induced anti-inflammation in NP, and activation of PPARα increased SIRT1 expression, thus reducing the proinflammatory function of NF-κB. These data suggested that WY-14643 might serve as an inflammation mediator, which may be a potential therapy option for NP.

3.
J Cell Physiol ; 232(12): 3622-3630, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28145562

RESUMO

Abnormal methylation genes usually act as oncogenes or anti-oncogenes in the occurrence and development of tumor, indicating their potential role as biomarkers in the evaluation of malignant tumor. However, the research on methylation's association with glioblastoma was rare. We attempted to figure out whether the methylation of genes could serve as the biomarker in evaluating the malignant degree of GBM. Methylation microarray data of 275 GBM patients have been downloaded from The Cancer Genome Atlas (TCGA) dataset. Logistic regression was used to find the methylated genes associated with the malignant degree of patients with the tumor. Functional enrichment analysis and network analysis were further performed on these selected genes. A total of 668, 412, 470, and 620 genes relevant with the methylation or demethylation were found to be associated with the malignant degree, Grades 1-4 of tumor. The higher the degree of malignant tumor, the higher of its methylation degree of its corresponding genes. GO and KEGG analysis results showed that these methylated genes were enriched in many functions as cell adhesion, abnormal transcription, and cell cycle disorder, etc. Of note, CCL11 and LCN11 were found to be significantly related to the progression of GBM. Critical genes associated with cell cycle as CCL11 and LCN1 may play essential roles in the occurrence, development, and transition of glioblastoma. More research was needed to explore its potential molecular mechanism.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Quimiocina CCL11/genética , Distribuição de Qui-Quadrado , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/patologia , Humanos , Lipocalinas/genética , Modelos Logísticos , Gradação de Tumores , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos
4.
Int J Cancer ; 138(6): 1328-36, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26044706

RESUMO

The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area.


Assuntos
Sistemas CRISPR-Cas , Neoplasias/genética , Neoplasias/metabolismo , Animais , Epigênese Genética , Humanos , Mutação , Neoplasias/terapia , Edição de RNA , RNA Guia de Cinetoplastídeos/genética
5.
Neural Regen Res ; 10(3): 501-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25878603

RESUMO

Progressive motor deficits are relatively common in acute pontine infarction and frequently associated with increased functional disability. However, the factors that affect the progression of clinical motor weakness are largely unknown. Previous studies have suggested that pontine infarctions are caused mainly by basilar artery stenosis and penetrating artery disease. Recently, lower pons lesions in patients with acute pontine infarctions have been reported to be related to progressive motor deficits, and ensuing that damage to the corticospinal tracts may be responsible for the worsening of neurological symptoms. Here, we review studies on motor weakness progression in pontine infarction and discuss the mechanisms that may underlie the neurologic worsening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...